Covering by squares

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering by squares

In this paper we introduce the “do not touch” condition for squares in the discrete plane. We say that two squares “do not touch” if they do not share any vertex or any segment of an edge. Using this condition we define a covering of the discrete plane, the covering can be strong or weak, regular or non-regular. For simplicity, in this article, we will restrict our attention to regular covering...

متن کامل

Maximal Covering by Two Isothetic Unit Squares

Let P be the point set in two dimensional plane. In this paper, we consider the problem of locating two isothetic unit squares such that together they cover maximum number of points of P . In case of overlapping, the points in their common zone are counted once. To solve the problem, we propose an algorithm that runs in O(n log n) time using O(n log n) space.

متن کامل

Covering Points by Isothetic Unit Squares

Given a set P of n points in R, we consider two related problems. Firstly, we study the problem of computing two isothetic unit squares which may be either disjoint or intersecting (having empty common zone) such that they together cover maximum number of points. The time and space complexities of the proposed algorithm for this problem are both O(n). We also study the problem of computing k di...

متن کامل

Strong covering without squares

The study of “covering lemmas” started with Jensen [DeJe] who proved in 1974–5 that in the absence of 0 there is a certain degree of resemblance between V and L. More precisely, if 0 does not exist then for every set of ordinals X there exists a set of ordinals Y ∈ L such that X ⊆ Y and V 2 |Y | = max{|X|,א1}. There is no hope of covering countable sets by countable ones in general, because doi...

متن کامل

Covering Segments with Unit Squares

We study several variations of line segment covering problem with axis-parallel unit squares in IR. A set S of n line segments is given. The objective is to find the minimum number of axis-parallel unit squares which cover at least one end-point of each segment. The variations depend on the orientation and length of the input segments. We prove some of these problems to be NP-complete, and give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2008

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2007.10.044